Chem. Ber. 113, 1280-1289 (1980)

Anorganische Cyclopentan-Varianten : Organometall-Arsen-Fünfringe mit Fe – Co – As – Fe – As- und Mn – As – As – Mn – As-Gerüst

Erika Röttinger, Armin Trenkle, Rainer Müller und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg i. Br.

Eingegangen am 2. Juli 1979

Durch ungewöhnliche Reaktionen entstanden in mäßigen bis guten Ausbeuten die Mehrkernkomplexe $Fe_2CoCp_3(CO)_3(AsMe_2)_2$ (1) und $Mn_2(CO)_7Hal(AsMe_2)_3$ (2, Hal = Cl, Br). Beide wurden kristallographisch als anorganische Fünfring-Systeme identifiziert. 1 hat ein Fe-Co-As-Fe-As, 2 ein Mn-As-As-Mn-As-Gerüst. Die Geometrie von 1 ähnelt der "Briefumschlag"-Konformation, die von 2 der "Halbsessel"-Konformation des Cyclopentans.

Inorganic Cyclopentane Variants: Organometal-Arsenic Five-Membered Rings with Fe-Co-As-Fe-As and Mn-As-As-Mn-As Backbones

By unusual reactions the polynuclear complexes $Fe_2CoCp_3(CO)_3(AsMe_2)_2$ (1) and $Mn_2(CO)_7$ Hal-(AsMe₂)₃ (2, Hal = Cl, Br) were formed in moderate to good yields. Both were identified crystallographically as inorganic five-membered ring systems. 1 has a Fe-Co-As-Fe-As-, 2 has a Mn-As-As-Mn-As backbone. The geometry of 1 resembles the envelope conformation, that of 2 resembles the half-chair conformation of cyclopentane.

Fünfringsysteme mit einem Metallatom im Ring sind keine Seltenheit. Denn zweizähnige organische Liganden bevorzugen die Bildung fünfgliedriger Chelatringe. Auch rein anorganische Chelatliganden sind zur Bildung solcher Ringe befähigt, wobei oft zwei miteinander verknüpfte Metallatome Teil des Chelatkomplexes sind ¹⁻⁵. Fünfringe, in denen zwei Übergangsmetallatome durch Ringglieder getrennt sind, sind dagegen selten. Zwar kann man Metall-Metall-verknüpfte Zweikernkomplexe, die gleichzeitig ein- und zweiatomige Brückenliganden tragen ^{6, 7}, als solche Ringe bezeichnen. Als echter Vertreter dieser Klasse ist bisher aber neben einigen instabilen Mn- und Re-Komplexen⁸, nur ein Fe-Ge-Ge-Fe-Ge-Ring⁹ beschrieben. Ähnliches gilt für Fünfringe mit drei Metallatomen, von denen uns zu Beginn unserer Arbeiten nur ein Co-Co-Si-Fe-Siund ein Co-Co-Ge-Fe-Ge-Vertreter bekannt waren^{10, 11}.

Allen bisher aufgefundenen anorganischen $M_{2^{-}}$ oder M_{3} -Fünfringen ist gemeinsam, daß sie durch ungewöhnliche Reaktionen entstanden. Gleiches gilt auch für die beiden in dieser Arbeit beschriebenen Verbindungen 1 und 2, die das Ergebnis von Umsetzungen mit anderer Zielsetzung waren, die durch ihre Bildung unter z. T. drastischen Bedingungen aber hohe thermodynamische Stabilität beweisen¹².

Darstellung und Struktur von 1

Aus Organometall-dimethylarseniden und Metallcarbonylen konnten wir eine Serie von arsenverbrückten Zweikernkomplexen gewinnen¹³⁾ Bei diesen Umsetzungen nahm

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 – 2940/80/0404 – 1280 \$ 02.50/0 nur die Reaktion von Cp(CO)₂Fe-AsMe₂ mit CpCo(CO)₂ nicht den erwarteten Verlauf. Anstelle der üblichen 1:1-Stöchiometrie unter Bildung von 3 reagierten die Komponenten im Verhältnis 2:1 zu 1. Der Grund dafür scheint die erforderliche hohe Reaktionstemperatur zu sein, bei der die Ausgangskomplexe mit sich selbst, z. B. zu 4, reagieren können. Dadurch werden Zwischenstufen wie 5 möglich, von denen aus der Ringschluß zu 1 erfolgt sein könnte. Eine Isolierung von 4 oder 5 gelang jedoch nicht. Ein Grund für die leichte Umwandlung von 5 in 1 könnte darin liegen, daß es als Hetero-Dreikernkomplex mit zwei Dimethylarsenido-Brücken intramolekularen sterischen Hinderungen unterliegt ¹⁴, die beim Ringschluß unter CO-Eliminierung vermindert werden. Die geringe Ausbeute von 1 läßt sich damit erklären, daß der größte Teil der eingesetzten Fe-Verbindung mit sich selbst zu [Cp(CO)Fe-AsMe₂]₂ reagierte.

Aus den Spektren des dunkelgrünen, luftstabilen 1 war zunächst auf die Struktur 7 geschlossen worden. Denn im IR-Spektrum in Cyclohexan sind drei CO-Valenzschwingungsbanden bei 1942 st, 1928 sst und 1758 cm⁻¹ sst zu beobachten, die auf nur eine verbrückende CO-Gruppe hinweisen. Das NMR-Spektrum in Benzol schließt dagegen mit drei C₅H₅-Signalen bei $\delta = 3.95$, 4.35 und 4.69 und vier CH₃-Signalen bei $\delta = 1.26$, 1.34, 1.43 und 1.50 die alternative symmetrische Form 6 aus. Die Tatsache, daß 1 im festen Zustand zwei CO-Brücken hat, in Lösung aber nur eine zu besitzen scheint, deutet darauf hin, daß ein fluktuierendes Molekül vorliegt. Der Fluktuationsprozeß könnte in dem Öffnen und Schließen der zweiten CO-Brücke unter gleichzeitiger Vertauschung der formalen Arsen-Metall-Donorbindungen bestehen. In Übereinstimmung mit der Festkörperstruktur zeigt das IR-Spektrum von 1 in KBr breite CO-Banden bei 1915 st, 1779 m (Sch) und 1739 cm⁻¹ st. Die Kristallstruktur von 1 wurde mit Patterson- und Fourier-Methoden gelöst. Tab. 1 und 2 geben die wichtigste Strukturinformation, Abb. 1 zeigt das Molekül in der Aufsicht auf den Fünfring.

Tab. 1. Atomare Lageparameter von 1

Atom	x	Ŷ	Z	As1-Fe2
				As1-Co
Asl	0.7489	0.5453	0.7532	As2-Fe1
As2	0.6992(2)	0.8585(3)	0.7851(3)	As2-Fe2
Fel	0.8246(2)	0.8872(4)	0.8011(4)	Fe1-Co
Fe2	0.6376(3)	0.6608(4)	0.7124(4)	As1-C
Co	0.8606(2)	0.6549(4)	0.7746(4)	As2-C
C1	0.8117(14)	0.7855(26)	0.6720(21)	Fe1-C1
C2	0.8442(15)	0.7403(23)	0.8952(22)	Fe1=62
C3	0.6397(16)	0.6964(30)	0.5810(24)	Fe2-C3
C4	0.7692(18)	0.4278(32)	0.8845(26)	
C5	0.7361(17)	0.4031(32)	0.6446(25)	CO=C2
C6	0.6937(19)	0.8980(35)	0.9299(28)	Eol-Co(Mitto)
C7	0.6414(23)	1.0120(41)	0.6922(33)	E=2=Cp(Hitto)
C8	0.9078(18)	0.5281(36)	0.6854(27)	(hitte)
C9	0.9143(19)	0.4682(37)	0.7783(28)	co-cp(mitte)
C10	0.9601(24)	0.5513(43)	0.8699(32)	
C11	0.9741(26)	0.6725(49)	0.8027(38)	Fe2-As1-Co
C12	0.9413(23)	0.6428(44)	0.6973(33)	Fe1-As2-Fe2
C13	0.8757(19)	1.0307(36)	0.9257(27)	As2-Fe1-Co
C14	0.9260(18)	0.9956(37)	0.8680(28)	As1-Fe2-As2
C15	0.8923(20)	1.0223(37)	0.7548(29)	As1-Co-Fe1
C16	0.8312(22)	1.0757(41)	0.7348(33)	C4-As1-C5
C17	0.8177(18)	1.0877(36)	0.8502(29)	C6-As2-C7
C18	0.5481(21)	0.5203(40)	0.6581(31)	As2-Fe1-C1
C19	0.5908(16)	0.4942(30)	0.7696(25)	As2-Fe1-C2
C20	0.5924(18)	0.5992(33)	0.8357(26)	C1-Fe1-C2
C21	0.5495(18)	0.7066(34)	0,7723(26)	As1-Fe2-C3
C22	0.5210(19)	0.6617(35)	0.6626(27)	As2-Fe2-C3
01	0.7907(10)	0.8062(19)	0.5808(16)	As1-Co-C1
02	0.8537(12)	0.7162(22)	0.9898(17)	As1-Co-C2
03	0.6351(14)	0.7176(26)	0.4966(21)	C1-Co-C2

Abb. 1. Molekülstruktur von 1 (links) und 2a (rechts)

C13

C12

15))c14

Tab. 2. Wichtigste Bindungslängen [pm] und Winkel [°] von 1

233.4(5) 234.0(5) 235.6(6) 233.0(5) 245.6(6) 198(4) 200(4) 191(3) 186(3) 176(3) 189(3)

173(3)

175(3)

175(3)

122.7(2) 120.7(2) 101.4(2) 90.3(2) 98.5(1.3) 103.9(1.6) 90.5(8) 87.5(9)

CB233/79.

Der Fünfring von 1 ist pseudosymmetrisch, denn die Eisen- und Cobaltatome sind kristallographisch nicht zu unterscheiden. Ohne Kenntnis der Spektren (s. o.) hätte die Strukturanalyse daher auch die Form 6 zugelassen, die im Idealfall spiegelsymmetrisch ist (alle CO-Gruppen in der Spiegelebene). Fehlordnung der Moleküle im Gitter scheint jedoch nicht vorzuliegen, da sich die Bindungslängen Fe1-As2 und Co-As1 deutlich unterscheiden. Dies veranlaßte uns auch zur gewählten Bezeichnung der Fe- und Co-Atome, da der kovalente Radius des Cobalts als etwas kleiner angenommen wird (Radienkontraktion).

Die Koordinationsgeometrie an den einzelnen Ringatomen läßt sich unter Vernachlässigung der Metall-Metall-Bindung verstehen. Jeder der drei Cyclopentadienylmetall-Bausteine erreicht recht gut die typische "Klavierstuhl"-Geometrie für CpML₃-Einheiten¹⁵⁾. Dies bedeutet, daß die jeweils drei Liganden (CO und AsMe₂) an den Metallatomen Winkel nahe 90° aufspannen und daß der C₅H₅-Ligand diesen drei Liganden symmetrisch gegenübersteht. Dies bedeutet auch, daß die drei C₅H₅-Gruppen etwa senkrecht zur Ringebene stehen. Typisch an den AsMe₂-Ringgliedern sind die großen Metall-Arsen-Metall-Winkel in Abwesenheit einer dazugehörenden Metall-Metall-Bindung¹⁶⁾ und die dementsprechend kleineren C-As-C-Winkel.

Die Bindungslängen im Ring entsprechen der Erwartung. Die Metall-Arsen-Abstände (durchschnittlich 234 pm) sind einander recht ähnlich, was für die Pseudosymmetrie des Komplexes spricht. Sie liegen im Bereich bekannter Fe-As- und Co-As-Bindungslängen¹⁷⁾. Der Fe-Co-Abstand ist dagegen mit 246 pm etwas kürzer als in anderen doppelt CO-verbrückten Fe-Co-Bindungen¹⁸⁻²⁰⁾. Möglicherweise üben die Form und Konformation (s. u.) des Fünfringes hier einen komprimierenden Einfluß aus.

Darstellung und Struktur von 2

Die beiden Komplexe 2a und b wurden unabhängig voneinander auf völlig verschiedene Weise gewonnen. In beiden Fällen ist der Reaktionsverlauf nicht eindeutig nachzuvollziehen. 2a fiel bei der Untersuchung der Reaktivität der metallorganischen Lewis-Base 8^{21} an. Diese ließ sich in Analogie zu beschriebenen Verfahren²²⁾ aus Me₂AsCl und KMn(CO)₅ bei -78 °C in Pentan herstellen²³⁾. Ihre bei -30 °C einsetzende thermische Zersetzung unter CO-Entwicklung lieferte nicht nur wie beschrieben [(CO)₄Mn-AsMe₂]₂²¹⁾, sondern auch den neuen Fünfringkomplex 2a. Wir vermuten, daß bei der wahrscheinlich radikalisch verlaufenden Darstellungsreaktion bei -78 °C in Nebenreaktionen auch (CO)₅MnCl und Me₂As-AsMe₂ gebildet wurden, die miteinander zu 9a reagieren können. Aus 8 und 9a könnte sich unter CO-Abspaltung 2a bilden. Es sind jedoch auch andere Entstehungswege für 2a denkbar.

Über eine entsprechende Verbindung $9b^{24, 25)}$ wurde auch 2b erhalten. 9b läßt sich wie viele ähnliche Metall-Kakodyl-Komplexe²⁵⁾ thermisch unter CO-Freisetzung zu einem Sechsring-Komplex (hier 10) umwandeln. Wurde hierbei zu hoch erhitzt, so fiel in guten Ausbeuten der Fünfring 2b an. In Analogie zu anderen Sechsring-Synthesen²⁵⁾ ist die Zwischenstufe 11 plausibel. Das daraus zur Bildung von 2b formal zu eliminierende Me₂AsBr war jedoch nicht Bestandteil der löslichen Reaktionsprodukte. 10 kommt als Zwischenstufe für 2b nicht in Betracht, da seine Zersetzung erst bei Temperaturen einsetzt, die höher als die Bildungstemperatur von 2b sind.

2a und **b** sind orangegelbe, im festen Zustand luftstabile, kristalline Festkörper mit hohen Schmelzpunkten. Ihre Spektren (Tab. 3) beweisen ihre große Verwandtschaft. Während der diagnostische Wert der IR-Daten beschränkt war, da sie erst nachträglich den $Mn(CO)_4$ - und $Mn(CO)_3$ -Baugruppen zugeordnet werden konnten, ließen die NMR-Spektren mit je sechs gleich hohen Signalen nur wenige Möglichkeiten der Interpretation zu. Der Bereich der Arsen-Methyl-Signale ist erstaunlich groß; die unterschiedliche chemische Umgebung aller sechs Methylgruppen rührt von der *cis*-Stellung des Halogens und beider Arsenliganden an der $Mn(CO)_3$ -Einheit her.

Komplex		ν(CO)			δ(AsMe)		
2a	2073 m 1966 st	2022 st 1950 m	2000 st 1910 m	1974 st	0.80	0.97 1.66	1.31 2.06
2 b	2071 m 1964 st	2022 st 1953 m	2000 st 1913 m	1976 st	0.80 1.53	1.00 1.67	1.33 2.12

Tab. 3. IR (Cyclohexan, cm⁻¹)- und NMR (Benzol, int. TMS)-Daten der Komplexe 2

Von den denkbaren Strukturen der Komplexe 2 wurde die richtige durch kristallographische Analyse für 2a festgelegt. Die Lösung erfolgte durch direkte Methoden und mit Fourier-Synthesen. Tab. 4 und 5 und Abb. 1 fassen die Ergebnisse zusammen.

Die Bausteine des Fünfrings von **2a** sind verzerrt tetraedrisch koordinierte Arsenund recht gut oktaedrisch koordinierte Manganatome. Das Halogen und alle Arsenliganden sind *cis*-ständig an den Manganatomen, wie es der *trans*-Effekt der Carbonylgruppen erfordert ²⁶. Damit ist der axiale Chlorligand in der energetisch günstigsten Lage. Der Ringwinkel an As 1 ist deutlich größer als die an As 2 und As 3, womit As 1 wieder als typischer Brückenligand bei fehlender Metall-Metall-Bindung ausgewiesen ist ¹⁶. Dementsprechend ist an As 1 der C-As-C-Winkel kleiner als an As 2 und As 3. Letztere haben im Gegensatz zu As 1 nur ein Metallatom in ihrer Koordinationssphäre, was ihnen eine bessere Annäherung an die Tetraedergeometrie zu erlauben scheint.

Die Mangan-Arsen-Bindungslängen unterscheiden sich ebenfalls für As1 und As2/ As3. Während sie für As1 mit durchschnittlich 248 pm im üblichen Bereich für einfach arsenverbrückte Zweikernkomplexe^{14,16)} liegen, erscheinen sie für As2/As3 mit durchschnittlich 239 pm sehr kurz, sowohl im Vergleich zu anderen As – Mn-Abständen als auch im Vergleich zum As – Cr-Abstand von 248 pm in [(CO)₄Cr – AsMe₂ – AsMe₂]²⁷⁾, dem einzigen bisher vermessenen Komplex, in dem Diarsan-Brücken zwei Metallatome in einem Ringsystem verknüpfen. Eine Begründung dafür suchen wir nicht in konformativen (s. u.) Ringspannungen, denn diese sollten As 1–Mn ebenso verkürzen. Eher scheinen Metall-Arsen-Abstände in kleinen Ringen allgemein kurz zu sein, was sich auch z. T. an 1 sowie an dem kürzlich beschriebenen Kation $[(CO)_4Fe(\mu-AsMe_2)_2Mn(CO)_4]^{+28}$ zeigt. Die fünfte Bindung im Ring von 2a, die As–As-Bindung, bestätigt die Regel, daß Bindungslängen zwischen Hauptgruppenelementen viel weniger variabel sind: sie entspricht mit 242 pm recht genau den Werten bei anderen freien und komplexgebundenen Polyarsanen^{27, 29, 30}. Die Mn–Cl-Bindung ist mit 237 pm ebenfalls normal lang^{26, 28, 31})

Insgesamt zeigen alle Ringatome in beiden Ringen 1 und 2a keine ungewöhnliche Stereochemie. Daß noch nicht mehr anorganische Ringsysteme dieser Art beschrieben sind, sollte demnach mehr am Fehlen geeigneter Synthesewege als an einer prinzipiell schwierigen Bindungssituation solcher Komplexe liegen.

I	`ab.	4.	Atomare	Lageparameter von	2a
---	------	----	---------	-------------------	----

Atom	X	Y	Z
As1	0.8377(2)	0.4346(2)	0.3527(1)
As2	0.6431(2)	0.5719(2)	0.2411(1)
As3	0.7073(2)	0.3918(2)	0.1592(1)
Mn1	0.7934(2)	0.2525(3)	0.2565(2)
Mn2	0.7472(2)	0.6405(3)	0.3586(2)
C 2	0.6542(4)	0.2471(6)	0.3442(4)
C 1	0.8968(16)	0.2761(21)	0.1900(14)
C2	0.7563(22)	0.1091(24)	0.1988(16)
C3	0.8620(19)	0.1517(24)	0.3317(15)
С4	0.6839(19)	0.7926(24)	0.3657(15)
¢5	0.8298(21)	0.6882(21)	0.4458(17)
C6	0.6645(18)	0.5643(24)	0.4349(21)
C7	0.8283(22)	0.7019(21)	0.2681(18)
C8	0.9700(19)	0.4785(23)	0.3408(16)
C9	0.8467(18)	0.3738(21)	0.4792(13)
C10	0.6136(20)	0.6980(24)	0.1470(17)
C11	0.5177(17)	0.5217(23)	0.2720(17)
C12	0.7815(23)	0.4810(24)	0.0653(17)
C13	0.5932(19)	0.3337(26)	0.0943(17)
01	0.9615(13)	0.2947(16)	0.1477(11)
02	0.7325(16)	0.0157(16)	0.1646(11)
03	0.9072(17)	0.0880(18)	0.3762(12)
04	0.6448(16)	0.8863(17)	0.3745(13)
05	0.8822(14)	0.7126(17)	0.5033(11)
06	0.6161(14)	0.5213(19)	0.4884(12)
07	0.8746(16)	0.7347(21)	0.2137(12)

Tab. 5.	Wichtigste Bindungslängen	[pm]
	und Winkel [°] von 2a	<u>-</u>

Asi-Mn1	246.2(4)
As1-Mn2	250.2(4)
As2-Mn2	239.6(4)
As 3-Mn 1	238.6(4)
As2-As3	242.2(3)
Mn1-CZ	237.1(7)
As-C	191-199(3)
Mn-C	179-189(3)
C-0	110-116(4)
Mn1-As1-Mn2	123.6(1)
As1-Mn2-As2	91.7(1)
Mn2-As2-As3	111.9(1)
As2-As3-Mn1	110.8(1)
As3-Mn1-As1	90.8(1)
As1-Mn1-C2	84.5(2)
As3-Mn1-Cl	86.0(2)
As-Mn-C(cis)	86.1-93.8(8)
C-Mn-C(cis)	88.2-94.9(9)
Mn-Asi-C	105.7-111.8(7)
Mn-As2,3-C	116.5-121.8(8)
As-As-C	100.3-105.0(7)
C8-As1-C9	96(1)
C10-As2-C11	99(1)
C12-As3-C13	103(1)
Mn-C-0	175-178(2)

Geometrie der Ringe

Ein ebenes Fünfeck verlangt die Winkelsumme von 540°. Dies ist für 1 und 2a unter idealisierten Bedingungen (Tetraederwinkel am Arsen, 90°-Winkel an den Metallatomen) nicht zu erreichen. Die Wellung beider Ringe, die in Abb. 2 und 3 in einer Seitenansicht dargestellt sind, wird also z. T. auf Winkelspannungen zurückgehen. Die wesentliche Erklärung für die Ringgeometrie von 1 und 2a kann jedoch nicht darin liegen. Denn auch in einfachen M - As - M'-Verbindungen¹⁶) sind wie hier große Überschreitungen des Tetraederwinkels am Arsen normal. Und speziell bei 1 werden mögliche Winkelspannungen dadurch eliminert, daß wie üblich^{17, 32}) die Metall-Metall-Bindung stereochemisch irrelevant ist und die 90°-Winkel an den betreffenden Metallatomen mit Hilfe der Brücken-CO-Liganden aufgespannt werden.

Abb. 3. Seitenansicht von 2a

Die Situation der Fünfringe 1 und 2a ähnelt damit der beim Cyclopentan, das ebenfalls allein aufgrund der Winkelbedingungen eben sein könnte, denn der Tetraederwinkel weicht nur unwesentlich von 108° , dem Winkel in einem gleichseitigen ebenen Fünfeck, ab. Die bekannten Abstoßungen benachbarter CH₂-Gruppen führen jedoch dort zu den beiden möglichen Gleichgewichtskonformationen, die als Briefumschlag- und Halbsessel-Konformation bezeichnet werden ^{33, 34)}. Die Ringformen von 1 und 2a sind nun diesen beiden Formen recht ähnlich, was sich durch Angabe der vertikalen Abweichungen

1287

(in pm) der einzelnen Atome aus ihrer gemeinsamen Kleinste-Quadrate-Ebene verdeutlichen läßt (s. Angaben in den Formeln).

Halbsessel-Konformation

Die sehr genau verwirklichte Briefumschlag-Konformation von 1 teilt unter Vernachlässigung des Unterschiedes von Fe und Co mit der von Cyclopentan die Spiegelbildsymmetrie. Den Grund für diese Art der Wellung sehen wir bei 1 ebenfalls in den Wechselwirkungen vicinaler Liganden. So können die vier Atome As 1, As 2, Fe 1 und Co in einer Ebene liegen, da die verbrückenden CO-Gruppen, die C_5H_5 -Liganden und die Methylgruppen auf diese Weise eine günstige Verzahnung erhalten, ohne daß den Winkeln an den Ringatomen Zwang angetan werden muß. Falls jedoch das fünfte Atom Fe 2 ebenfalls in dieser Ebene läge, müßte wegen dessen Klavierstuhl-Geometrie (s. o.) sein C_5H_5 -Ligand auf einer Ringseite den Methylgruppen zu nahe kommen. Die Betrachtung von Abb. 2 lehrt, daß das Ausweichen vor dieser Abstoßung zur Ring-Wellung, zur verschiedenen Abwinkelung der "oberen" und "unteren" Methylgruppen und zur Abknickung des terminalen CO führt.

Die Halbsessel-Konformation von **2a** ist weniger ideal verwirklicht. Unter Vernachlässigung der verschiedenen Koordination der beiden Manganatome kann man jedoch auch hier angenähert die bei der entsprechenden Form des Cyclopentans exakte zweizählige Symmetrie konstatieren. Die Konformationsanalyse wird durch das ausschließliche Vorliegen sehr einfacher Liganden erleichtert. Danach kann die alternierende Aneinanderreihung von AsMe₂- und Mn(CO)₄-Baueinheiten zu einem ebenen Schweratomgerüst führen, wie es auch in den einfachsten Ringen [(CO)₄Mn – EMe₂]₂ (E = P, As)³⁵⁾ vorliegt. Denn dabei können jeweils die Methylgruppen in die Lücken zwischen den CO-Gruppen zeigen und umgekehrt. Die Tatsache, daß **2b** gewellt ist, muß also von den beiden miteinander verknüpften Tetraeder-Atomen As2 und As3 verursacht sein. Diese streben eine gestaffelte Anordnung ihrer Methylgruppen an, was es ihnen nicht erlaubt, mit Mn1 und Mn2 in einer Ebene zu liegen. Daß die resultierende Ring-Konformation ohne weitere Zwänge möglich ist, erkennt man daran, daß die Oktaedergeometrie an den Manganatomen kaum verzerrt ist.

Insgesamt sind 1 und 2a weniger stark gewellt als die beiden Cyclopentan-Konformeren. Denn trotz größerer Bindungslängen sind die Abweichungen der Atome aus der Ringebene jeweils ähnlich wie bei C_5H_{10} . Die intramolekularen Wechselwirkungen, die zu den Konformationen führen, sind natürlich bei diesen anorganischen Ringsystemen ganz anderer Natur als beim Cyclopentan.

Daraus läßt sich vorhersagen, daß die Vielzahl der möglichen Metall-Ligand-Kombinationen auch noch viele verschiedene Ringformen solcher Organometall-Zyklen zulassen wird.

Diese Arbeit wurde vom Fonds der Chemischen Industrie und vom Rechenzentrum der Universität Freiburg unterstützt. Für ein Massenspektrum danken wir Herrn Dr. P. Merbach, Universität Erlangen.

Experimenteller Teil

Chemische Umsetzungen wurden unter Ausschluß von Luft und Feuchtigkeit durchgeführt. Die kristallographische Datensammlung erfolgte auf einem Nonius-CAD4-Diffraktometer.

 $Di-\mu$ -carbonyl- μ -[carbonyl(cyclopentadienyl)bis(dimethylarsenido)eisen-As,As']-(cyclopentadienyl)[(cyclopentadienyl)cobalt]eisen(Co-Fe) (1): Die Lösung von 2.74 g (9.7 mmol) Cp(CO)₂Fe-AsMe₂ und 2.70 g (15.0 mmol) CpCo(CO)₂ in 50 ml Cyclohexan wurde 4 Tage bei 85°C Badtemp. gerührt. Nach Filtrieren wurde i. Hochvak. von allen flüchtigen Bestandteilen befreit. Aus dem Rückstand, der vorwiegend aus [Cp(CO)Fe-AsMe₂]₂³⁶ bestand, wurde mit 10 ml heißem Benzol bevorzugt das gewünschte Produkt 1 herausgelöst. Chromatographie der Benzollösung über eine 2 cm × 80 cm-Kieselgel-Säule ergab aus der ersten, roten Fraktion geringe Mengen [Cp(CO)Fe-AsMe₂]₂. Aus der zweiten, grünen Fraktion erhielt man nach einmaligem Umkristallisieren aus Benzol/Cyclohexan (4:1) 0.36 g (11%) schwarzgrünes 1 vom Schmp. 257-259°C (Zers.).

 $C_{22}H_{27}As_2CoFe_2O_3$ (659.9) Ber. C 40.04 H 4.11 O 7.27 Fe 16.93 Gef. C 40.26 H 4.33 O 7.09 Fe 16.80

Tetracarbonyl- μ -(dimethylarsenido)- μ -(tetramethyldiarsan-As,As')-(tricarbonylchloromangan)mangan (2a): Zu einer Suspension von 3.90 g (16.7 mmol) KMn(CO)₅ in 50 ml Pentan wurde bei -78 °C langsam die Lösung von 2.35 g (16.7 mmol) Me₂AsCl in 100 ml Pentan getropft. Nach 2 h Rühren wurde auf - 30 °C erwärmt. Die tiefrote Lösung entfärbte sich, woben CO entwich und ein gelbes Pulver ausfiel. Nach Beendigung der CO-Entwicklung wurde auf Raumtemp. erwärmt, danach filtriert und zur Trockne eingeengt. Zweimaliges Umkristallisieren des Rückstandes aus Benzol/Pentan (1:1) ergab 0.58 g (16%) gelbes 2a vom Schmp. 288-295 °C (Zers.).

> C₁₃H₁₈As₃ClMn₂O₇ (656.4) Ber. C 23.79 H 2.76 Cl 5.40 Mn 16.74 Gef. C 24.23 H 2.77 Cl 6.10 Mn 16.50 Molmasse 656 (bezügl. ³⁵Cl, EI-MS)

(Bromotricarbonylmangan)tetracarbonyl- μ -(dimethylarsenido)- μ -(tetramethyldiarsan-As,As')mangan (2b): 0.70 g (1.53 mmol) 9b²⁵) in 4 ml Benzol wurden im Einschlußrohr 8 h auf 125 °C erhitzt. Das Produkt nahm man in 30 ml Benzol auf, filtrierte und engte zur Trockne ein. Der Rückstand wurde mit Benzol/THF (1:1) über eine 2 cm × 50 cm-Kieselgel-Säule chromatographiert. Aus der ersten, gelben Fraktion erhielt man nach Umkristallisieren aus Benzol/Hexan (1:3) 0.28 g (52%) orangegelbes 2b vom Schmp. 297 °C (Zers.).

C13H18As3BrMn2O7 (700.8) Ber. C 22.28 H 2.59 Mn 15.68 Gef. C 22.35 H 2.54 Mn 15.05

Kristallographische Daten

1: Raumgruppe Cc, Z = 4; a = 1918.6 (9), b = 989.8 (7), c = 1302.1 (9) pm, $\beta = 108.04$ (3)°; $d_{\text{ber.}} = 1.86, d_{\text{gef.}} = 187 \text{ g/cm}^3, \mu = 49.56 \text{ cm}^{-1}$; 1636 absorptionskorrigierte unabhängige Reflexe mit $I > 2 \sigma(I)$, R = 0.070, Restelektronendichte-Maxima von + 1.4 und $-1.9 e/10^6$ pm³ in der Nähe der Arsenatome.

2a: Raumgruppe $P2_1/c$, Z = 4; a = 1414.2 (3), b = 1043.1 (3), c = 1495.7 (2) pm, $\beta = 90.28$ (1)°; $d_{\text{ber.}} = 1.98$, $d_{\text{gef.}} = 1.98$ g/cm³, $\mu = 60.73$; 1858 absorptionskorrigierte unabhängige Reflexe mit $I > 3 \sigma(I)$, R = 0.074, Restelektronendichte-Maxima von +1.5 und $-1.2 e/10^6$ pm³ in der Nähe der Schweratome.

Tabellen mit den anisotropen Temperaturfaktoren, mit allen Abständen und Winkeln und mit den Strukturfaktoren sind bei den Autoren erhältlich.

Literatur

- ¹⁾ W. S. Sheldrick und A. Borkenstein, Acta Crystallogr., Sect. B 33, 2916 (1977).
- ²⁾ J. Ellermann, N. Geheeb, G. Zoubek und G. Thiele, Z. Naturforsch., Teil B 32, 1271 (1977).
- ³⁾ J. Greene und M. D. Curtis, Inorg. Chem. 17, 2324 (1978).
- ⁴⁾ F. A. Cotton, R. J. Haines, B. E. Hanson und Y. C. Sekutowski, Inorg. Chem. 17, 2010 (1978).
- ⁵⁾ H. Schmidbauer, H. Wohlleben, F. Wagner, D. F. Van de Vondel und G. P. Van der Kelen, Chem. Ber. **110**, 2758 (1977).
- ⁶⁾ S. Aime, G. Gervasio, L. Milone, R. Rossetti und P. L. Stanghellini, J. Chem. Soc., Dalton Trans. 1978, 534.
- ⁷⁾ E. Keller, A. Trenkle und H. Vahrenkamp, Chem. Ber. 110, 441 (1977).
- ⁸⁾ V. Küllmer und H. Vahrenkamp, Chem. Ber. 110, 237 (1977).
- ⁹⁾ K. Triplett und M. D. Curtis, Inorg. Chem. 14, 2284 (1975).
- ¹⁰⁾ M. Elder und W. L. Hutcheon, J. Chem. Soc., Dalton Trans. 1972, 175.
- ¹¹⁾ K. M. Abraham und G. Urry, Inorg. Chem. 12, 2850 (1973).
- ¹²⁾ Über 1 ist in einer Kurzmitteilung berichtet worden: E. Röttinger, R. Müller und H. Vahrenkamp, Angew. Chem. 89, 341 (1977); Angew. Chem., Int. Ed. Engl. 16, 332 (1977).
- 13) R. Müller und H. Vahrenkamp, Chem. Ber. 110, 3910 (1977).
- ¹⁴⁾ E. Röttinger und H. Vahrenkamp, J. Chem. Res. 1977, S 76, M 0818.
- ¹⁵⁾ E. W. Abel und F. G. A. Stone, Q. Rev., Chem. Soc. 23, 325 (1969).
- ¹⁶⁾ Vgl. E. Keller und H. Vahrenkamp, Chem. Ber. 111, 65 (1978).
- ¹⁷⁾ Vgl. E. Keller und H. Vahrenkamp, Chem. Ber. 109, 229 (1976), sowie darin zitierte Arbeiten.
- ¹⁸⁾ I. L. C. Campbell und F. S. Stephens, J. Chem. Soc., Dalton Trans. 1974, 923; 1975, 23.
- ¹⁹⁾ F. S. Stephens, J. Chem. Soc., Dalton Trans. 1974, 13.
- ²⁰⁾ G. Davey und F. S. Stephens, J. Chem. Soc., Dalton Trans. 1974, 698.
- ²¹⁾ E. W. Abel und G. V. Hutson, J. Inorg. Nucl. Chem. 30, 2339 (1968).
- ²²⁾ R. Müller und H. Vahrenkamp, J. Organomet. Chem. 170, C 25 (1978).
- ²³⁾ R. Müller und H. Vahrenkamp, unveröffentlicht.
- ²⁴⁾ 9b ist aus (CO)₅MnBr und Me₂As-AsMe₂ zugänglich ²⁵⁾.
- ²⁵⁾ A. Trenkle und H. Vahrenkamp, unveröffentlicht.
- ²⁶⁾ H. Vahrenkamp, Chem. Ber. 104, 449 (1971).
- ²⁷⁾ F. A. Cotton und T. R. Webb, Inorg. Chim. Acta 10, 127 (1974).
- ²⁸⁾ H. J. Langenbach, E. Röttinger und H. Vahrenkamp, Chem. Ber. 113, 42 (1980).
- ²⁹⁾ P. S. Elmes, B. M. Gatehouse, D. J. Lloyd und B. O. West, J. Chem. Soc., Chem. Commun. 1974, 953.
- ³⁰⁾ J. H. Burus und J. Waser, J. Am. Chem. Soc. 79, 859 (1957).
- ³¹⁾ C. A. Bear und J. Trotter, J. Chem. Soc., Dalton Trans. 1973, 673.
- ³²⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 110, 430 (1977).
- ³³⁾ K. S. Pitzer und W. E. Donath, J. Am. Chem. Soc. 81, 3213 (1959).
- ³⁴⁾ B. Fuchs, Conformations of Five Membered Rings, in E. L. Eliel und N. L. Allinger (Herausgeber), Topics in Stereochemistry, Bd. 10, S. 1 ff, J. Wiley & Sons, New York 1978.
- ³⁵⁾ *H. Vahrenkamp*, Chem. Ber. 111, 3472 (1978).
- ³⁶⁾ R. G. Hayter, J. Am. Chem. Soc. 85, 3120 (1963).

[233/79]